科学研究
科研成果
朱瑞、龚旗煌等在Nature Reviews Materials发表综述论文
发布日期:2019-11-22 浏览次数:

朱瑞、龚旗煌等在Nature Reviews Materials发表综述论文

近日,太阳成集团tyc234cc“极端光学创新研究团队”朱瑞研究员、龚旗煌院士与英国萨里大学张伟教授合作,在全球顶级期刊《Nature Reviews Materials》(影响因子IF=74.45)上发表题为“Minimizing non-radiative recombination losses in perovskite solar cells”的综述文章,深入探讨和总结了钙钛矿太阳能电池中的非辐射复合能量损失问题,并对最大化降低非辐射复合损失提出了建议和展望。(https://doi.org/10.1038/s41578-019-0151-y)

钙钛矿太阳能电池制备工艺简单,成本低廉。近年来,该类太阳能电池因其快速增长的光电转换效率和逐步提升的器件稳定性,吸引了学术界和产业界的广泛关注,为光伏领域带来了新的机遇。然而,由于钙钛矿太阳能电池中存在非辐射复合损失,所以目前的光电转换效率依然低于肖克利-奎塞尔(Shockley-Queisser)理论所定义的极限效率。因此,最大化降低钙钛矿太阳能电池的非辐射复合损失是进一步提升电池器件效率的未来研究重点。

鉴于此,研究团队基于已有的研究基础,对“最大化降低钙钛矿太阳能电池的非辐射复合损失”这一论题进行深入探讨和系统总结。该综述文章主要包括以下几个方面:首先,介绍了钙钛矿太阳能电池中非辐射复合的起源,并详细讨论了非辐射复合损失的定量化测试方法;其次,系统总结了在降低非辐射复合损失方面的最近研究进展;再次,依据肖克利-奎塞尔理论,对钙钛矿太阳能电池所能够获得的最高光电转换效率进行了科学预测;最后,在展望部分,前瞻性地指出了最大化降低非辐射复合损失的未来努力方向。

图1. 金属卤化物钙钛矿活性层内的电荷载流子产生与复合动力学机制

在理想的金属卤化物钙钛矿半导体材料中,所有的光生电子和空穴最终将通过发射光子的方式进行复合(即:辐射复合)。然而,在实际的钙钛矿太阳能电池中存在大量的非辐射复合通道(如图1所示),绝大部分光生载流子将优先通过其他非辐射途径进行复合(例如,缺陷辅助复合,俄歇复合,界面诱导复合,电声耦合,带尾态复合等)。这些非辐射复合损失过程极大降低了电池在稳态下的光生载流子浓度,从而减小了金属卤化物钙钛矿层中准费米能级劈裂的能级差,最终造成钙钛矿太阳能电池较大的电压损失。因此,最大化降低或抑制这些非辐射复合通道是提升器件开路电压和光电转换效率的关键。

针对各种非辐射复合通道,该综述首先介绍了目前量化分析非辐射复合损失的常规测试技术以及测试要点,如图2所示。

图2. 量化钙钛矿薄膜和完整器件中非辐射复合损失的表征技术

随后,结合当前研究现状,进一步梳理了近年来在降低非辐射复合损失方面取得的一系列重要进展。值得一提的是,该研究团队去年在《Science》杂志上报道的基于溶液二次生长方法构建渐变结的策略(如图3所示),在降低反式钙钛矿太阳能电池的非辐射复合损失方面效果显著(Science 360, 1442-1446)。此后,一系列研究报道显示,相似的策略在正式常规结构钙钛矿太阳能电池和全无机钙钛矿太阳能电池中也可以获得正向的实验结果。由此说明,在金属卤化物钙钛矿半导体材料中构建有效的渐变结对后续降低非辐射复合损失具有非常重要的借鉴价值。

图3. 渐变结钙钛矿太阳能电池器件结构和渐变结的时间分辨光谱

此外,该综述还以当前最高效率的砷化镓太阳能电池为参照,先假定钙钛矿太阳能电池的非辐射复合损失与砷化镓太阳能电池的情形一致,再依据肖克利-奎塞尔理论,对钙钛矿太阳能电池所能够获得的性能参数进行科学预测,进而给出电池器件所能达到的最高光电转换效率,如图4所示。

图4. 当钙钛矿太阳能电池的非辐射复合损失与当前最高效率砷化镓太阳能电池的情况相同时,单结钙钛矿太阳能电池可实现的最优器件性能参数

最后,该综述也指出,目前提升器件性能的两条主要途径是最优化光子俘获和最大化降低非辐射复合损失。如果能将二者进行有效整合,探索更可靠的协同优化策略,这可能会是将器件光电转换效率提升至接近理论极限的可行方案。为此,综述也对一些未来的努力方向进行了展望。

总的来说,该综述为最大程度地降低钙钛矿太阳能电池的非辐射复合损失提供了理论总结,也为开展实验工作提供了参考借鉴,对进一步提升电池效率,推动该类电池产业化应用有重要意义。

该综述论文的第一作者/共同第一作者为朱瑞研究员课题组罗德映博士(已毕业)和博士研究生苏睿,太阳成集团tyc234cc朱瑞研究员和萨里大学张伟教授为通讯作者,太阳成集团tyc234cc和萨里大学为通讯单位。该工作得到得到了科技部、国家自然科学基金委、太阳成集团tyc234cc人工微结构和介观物理国家重点实验室、纳光电子前沿科学中心、极端光学协同创新中心、“2011计划”量子物质科学协同创新中心、英国工程和自然科学研究委员会(EPSRC)等单位的支持。